
1. Introduction
The Unified Forecast System (UFS; https://ufscommunity.org) based on the Finite-Volume Cubed-Sphere (FV3) 
dynamical core (Harris et al., 2021; Lin, 2004; Putman & Lin, 2007) is being developed as a next-generation 
modeling framework for all operational forecasting of the U.S. National Weather Service (NWS) at all scales, 
and for community research in earth system modeling (Schneider et  al.,  2017). One of the important appli-
cations of UFS is the Rapid Refresh Forecast System (RRFS) for regional ensemble forecasting at a ∼3 km 
convection-allowing resolution (Kinter et al., 2020). In the meanwhile, the Joint Effort in Data assimilation Inte-
gration (JEDI, Trémolet & Auligné, 2020) framework is being developed as the next-generation DA infrastruc-
ture for UFS to replace the Gridpoint Statistical Interpolation (GSI, Kleist et al., 2009) data assimilation (DA) 
system that is currently used by all NWS operational forecast models.

The first public release of JEDI (https://www.jcsda.org/jcsda-project-jedi) supporting FV3 dynamical core became 
available in October 2020, and JEDI supports both variational and ensemble DA algorithms. The prototype JEDI 
has been tested for several applications with global models. For example, JEDI 3-dimensional variational (3DVar) 
DA has been used to produce interim Marine Reanalysis data over a 40 year period (https://registry.opendata.
aws/noaa-ufs-marinereanalysis). Baker et al. (2022) showed that the analysis increments and verification metrics 
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against radiosonde data from the JEDI-based 3DVar are comparable to those from the current operational DA 
system at Naval Research Laboratory for a three-month-long cycling experiment. Huang et al. (2022) demon-
strated that JEDI-based pure ensemble-variational (EnVar) DA improved aerosol optical depth forecasts using 
FV3-based global model. Z. Liu et al. (2022) showed that assimilating all-sky microwave radiance along with 
conventional observations using JEDI EnVar improved surface and precipitation forecasts in global Model for 
Prediction Across Scales (MPAS, Skamarock et al., 2012).

Although JEDI also supports the limited area model version of FV3 (FV3-LAM, Black et al., 2021), capabilities 
to assimilate regional data sets within JEDI for regional applications are still limited. No paper has been formally 
published testing and evaluating JEDI with FV3-LAM according to our knowledge.

Many studies have been shown positive impacts of assimilating radar data on convective-scale forecasts (e.g., Kain 
et al., 2010; Stensrud et al., 2013; Sun et al., 2014). Recently, capabilities for directly assimilating radar reflectiv-
ity (Z) and radial velocity (Vr) data have been added to the GSI ensemble Kalman filter (EnKF, Evensen, 1994; 
Evensen, 2003) and hybrid EnVar (Hamill & Snyder, 2000) systems by this research team and the evaluation 
results are documented in a series of papers (Chen et al., 2021, 2022; Labriola et al., 2021; Li et al., 2022; C. Liu 
et al., 2022; C. C. Tong et al., 2020). Radar DA capability was not available in JEDI before this work, however. 
Given that JEDI will replace GSI for regional operational forecasting, it is important to implement and test such 
capabilities within JEDI.

EnKF is one of the preferred methods for assimilating radar data. With the help of ensemble-derived cross-variable 
covariances, state variables not directly observed by radar can be updated (e.g., Snyder & Zhang,  2003; M. 
Tong & Xue, 2005). This is especially important for the analysis and forecasting of convective storms inside 
which few state variables are directly observed. A variant of EnKF, the ensemble square root Kalman filter 
(EnSRF, Whitaker & Hamill, 2002) algorithm is commonly used for radar DA studies (Labriola et al., 2020; 
Xue et al., 2006) and such capabilities have been implemented in the GSI DA system (Labriola et al., 2021; Luo 
et al., 2022). JEDI implements another variant of EnKF, the Local Ensemble Transform Kalman Filter (LETKF, 
Hunt et al., 2007) and its variation that uses a gain-form LETKF (LGETKF, Bishop et al., 2017) that does vertical 
localization in model space instead. The LGETKF has been shown to have advantage for vertically integrated 
observations such as satellite radiance (Lei et al., 2018). The regular LETKF performs vertical localization using 
a so-called R-based method that adjusts observation error variances depending on the distance between the obser-
vation and grid point being updated (Hunt et al., 2007). R-based method is used for horizontal localization in both 
LETKF and LGETKF. LGETKF has not been previously used for radar DA according to our knowledge.

In this study, the radar DA capabilities implemented within GSI are re-implemented with the LETKF and 
LGETKF algorithms of JEDI. The enhanced JEDI system is coupled with the Short-Range Weather Applica-
tion (SRW App) version 2 release of FV3-LAM and tested with a convective storm case that occurred over the 
Southern Great Plains of the U.S. The results of analysis and forecast using JEDI LETKF and LGETKF, and GSI 
EnSRF are compared. In addition, the gain-form vertical localization with different degrees of approximation for 
computational cost saving is assessed. This study is noval in being the application of LGETKF radar DA, and 
also being the first time that JEDI is applied to regional convective scale DA. The implementation of radar DA 
capabilities within JEDI is also an important component of this work.

The rest of this paper is organized as follows. Section 2 briefly describes the convective storm case of 20 May 
2019. Section 3 describes the DA experiments and Section 4 discusses and evaluates the experimental results. 
Section 5 presents a summary and conclusions.

2. Case Overview
The convective storms of 20 May 2019 affected the Southern Great Plains of the U.S. and nearby states including 
Missouri and Arkansas. An upper-level trough was located over the eastern U.S. and a surface low was situated 
around the central U.S. at 1800 UTC 20 May 2019 (See Figure S1 in Supporting Information S1). This condi-
tion formed favorable conditions for severe weather in the early afternoon, including tornadic supercells that 
developed rapidly in the east of a dryline along a SW-NE-oriented corridor over Texas, Oklahoma, Kansas, and 
Missouri through the interactions of topography, warm and moist low-level southerly flows, and the jet stream. 
The NWS Storm Prediction Center (SPC) issued severe weather warnings, including tornados, thunderstorms, 
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and floods in those regions, and there were 34 tornadoes in total, many wind and hail reports for that day accord-
ing to the SPC report.

3. Experimental Design
The FV3-LAM of the UFS SRW App version 2 (UFS Development Team., 2022) is employed as the forecast 
model. The domain uses the extended Schmidt gnomonic grid with 310 × 310 horizontal grid points (see Figure 
S1 in Supporting Information S1) across Texas and Oklahoma with a ∼3 km grid spacing and 64 vertical levels. 
We use the “RRFS_v1_alpha” physics suite with the Thompson microphysics scheme (Thompson et al., 2008) 
from the Common Community Physics Packages (CCPP, Heinzeller et al., 2022). The initial ensemble is started 
from the NCEP operational Global Data Assimilation System (GDAS) EnKF analyses at 1800 UTC of 20 May 
2019 and the corresponding GDAS 3-hourly ensemble forecasts up to 9 hr provide lateral boundary conditions.

The observed Z from Multi-Radar Multi-Sensor (MRMS, Smith et al., 2016) 3D mosaic data and Level-II Vr data 
from WSR-88D radars are assimilated. Vr observations are processed using an automatic velocity dealiasing algo-
rithm (Brewster et al., 2005). Observation errors for Z and Vr are assumed to be 5 dBZ and 3 m s −1, respectively. Z 
and Vr forward operators implemented in GSI (Labriola et al., 2021; C. C. Tong et al., 2020) are migrated into the 
Unified Forward Operator (UFO) module of JEDI. The Z operator following Jung et al. (2008) is consistent with 
the Thompson microphysics scheme used. The state variables updated by DA include the 3 wind components u, v, 
w, temperature T, pressure p, specific humidity qv, mixing ratios of hydrometeors including cloud water qc, cloud 
ice qi, rain water qr, snow qs, graupel qg, and the total number concentration of rain water qnr.

The radar DA capabilities are implemented in the LETKF and LGETKF of JEDI version 1.1.0 released in June 
2021. GSI EnSRF is used as a reference. The covariance localization radii are set to 18 km in the horizontal and 
0.7 scale height in logarithmic p in the vertical. Since vertical localization was not available in JEDI LETKF of 
this JEDI release, we additionally implement an R-based vertical localization (Miyoshi & Yamane, 2007) based 
on the correlation formulas of Gaspari and Cohn (1999). LGETKF uses a modulation approach to generate an 
expanded ensemble from the raw ensemble and eigenvectors of the localization matrix. To examine the perfor-
mance and computational efficiency of LGETKF for radar DA with different factions of retained variance, we 
conduct LGETKF DA experiments with two fraction values of 0.6 and 0.99, which effectively expand the 40 
ensemble members to 280 and 1,080 modulated ensemble members, respectively. For covariance inflation, the 
relaxation-to-prior-spread (Whitaker & Hamill, 2012) method is used to restore the posterior ensemble spread to 
99% of the prior ensemble spread.

For the cycled radar DA and forecast experiments (named EnSRF, LETKF, LGETKF.6, and LGETKF.99), radar 
observations are assimilated every 15 min from 2300 through 0000 UTC (Figure S2 in Supporting Informa-
tion S1). The 5-hr 40-member ensemble forecasts initialized from 1800 UTC GDAS analyses serve as the back-
ground forecasts at 2300 UTC. Ensemble free forecasts from the final analyses at 0000 UTC are run to 3 hr, 
following the configuration of the Warn-on-Forecast System (WoFS), emphasizing short-range forecasting of 
severe weather (Jones et al., 2020; Stensrud et al., 2009; Wheatley et al., 2015). Further, the greatest impact 
of radar DA tends to be limited to the first few hours of forecast (Kain et al., 2010; Sun et al., 2014). We also 
continue the spinup ensemble forecasts from 2300 UTC for 4 hr without any DA as a baseline (hereafter, NODA). 
More information on the experiments can be found in Table S1 and Figure S2 in Supporting Information S1.

4. Results
To evaluate the DA performance during the 60-min DA window, root mean squared innovations (RMSIs) and 
mean innovations of background forecasts and analyses of Z and Vr are calculated against corresponding obser-
vations and shown in Figure 1. Compared to NODA, all DA experiments have much lower forecast RMSIs and 
biases for both Z and Vr after the first cycle. The RMSIs of forecast and analyzed Z are continually reduced 
through the DA cycles with the reduction being largest in the first cycle (Figures 1a and 1b). The RMSIs of Vr 
remain at a similar level after large reduction in the first cycle, and the analysis RMSIs are around 2.6 m s −1 while 
the background forecast RMSIs are around 4.7 m s −1 (Figures 1c and 1d). The forecast and analysis RMSIs of Z 
from LETKF are slightly higher than those of EnSRF in later cycles but both are evidently lower than those of 
LGETKF (Figures 1a and 1b), suggesting that the vertical localization algorithm makes more difference (LETKF 
vs. LGETKF) than the ensemble filter algorithm difference (LETKF vs. EnSRF). However, for Vr, the forecast 



Geophysical Research Letters

PARK ET AL.

10.1029/2022GL102709

4 of 9

RMSIs from different experiments are almost identical (Figure 1c) while the analysis RMSIs of LETKF are 
slightly higher than those of other experiments (Figure 1d). It is possible that the linear observation opearator of 
Vr reduces the differences among the algorithms.

The mean innovation (observation minus background) of forecast reflectivity at the first analysis cycle (Figure 1e) 
is largely positive (∼8 dBZ), indicating significant low bias in predicted reflectivity at this time. The forecast 
reflectivity from NODA remains much lower than observations and analyses of DA experiments at the final 
analysis time (Figure S3b in Supporting Information S1). The analysis mean innovations of EnSRF and LETKF 
are close to zero after the first DA cycle while those of LGETKFs remain close to −1.5 dBZ (Figure 1f), which 
is the result of over-analyzing the coverage of >40 dBZ echoes (Figure S3 in Supporting Information S1). Some 
of these differences may be because that the effects of observation-based and the gain-based model-space locali-
zation are not identical in practice, and LGETKF and LETKF in JEDI-FV3 version 1.1 using somewhat different 
vertical analysis grids, and horizontal and vertical localization radii are calculated in combination in LETKF 
rather than separately as in LGETKF. The differences in analysis mean innovations are much smaller for Vr 
among the experiments and the analysis mean innovations are much smaller than those of forecasts in earlier 
and later cycles (Figure 1h). The RMSIs and mean innovations of LGETKF.99 and LGETKF.6 are almost the 
same for both Z and Vr, suggesting that retaining only 60% of background variance for vertical localization in 
LGETKF may be sufficient for the current radar DA problem. The similarity in performance between LGETKF.6 
and LGETKF.99 could be due to the rather dense radar observations, especially at the mid-to lower levels, so that 
nearby observations play dominant roles.

The localized probability-matched ensemble mean (LPM, Snook et al., 2020) forecasts of hourly precipitation 
is calculated for NODA and DA experiments at 1, 2, and 3 hr of forecast and compared with Stage IV hourly 
precipitation in Figure 2. All DA experiments generally predict a mesoscale convective system with a leading 
convective line and a trailing weak precipitation region similar to observed (Figures 2a–2c). However, the LPM 
means overpredict the maximum intensity somewhat, possibly caused by the tendency of high frequency bias of 
the Thompson microphysics (Skinner et al., 2018). Compared to NODA, the DA experiments better capture the 

Figure 1. Innovation statistics from ensemble mean for the five experiments during the DA cycles. Top row: Root-mean squared innovations (RMSIs) of reflectivity 
Z forecasts (a) and analyses (b), and of radial velocity Vr forecasts (c) and analyses (d). Bottom row: Mean innovations or mean biases of Z forecasts (e) and analyses 
(f) and of Vr forecasts (g) and analysis (h). For Z, statistics are only computed where either observed or simulated reflectivity exceeds 15 dBZ, following C. C. Tong 
et al. (2020).
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southern portion of the convective line elements as well as the trailing weak 
precipitation in southern Kansas (Figure 2).

The precipitation forecasts of DA experiments are generally similar but some 
differences are found in the first forecast hour. LGETKF experiments have 
more light rainfalls exceeding 1 mm in northwestern Arkansas compared to 
EnSRF and LETKF (Figures 2g, 2j, 2m, and 2p). The precipitation exceeding 
10 mm in western Oklahoma is accurately captured in all DA experiments 
while a slight eastward displacement in northern Texas is seen in LGETKF.6. 
Overall, their performances become quite similar in later forecast hours 
except that LGETKF experiments produce more light precipitation in south-
ern Kansas.

Performance diagrams (Roebber,  2009) relating Probability of Detec-
tion (POD), False Alarm Ratio (FAR), Critical Success Index (CSI) and 
frequency bias of 1/2/3 hr forecast composite reflectivity with 45 dBZ thresh-
old from NODA and DA experiments are shown in Figure 3. Neighborhood 
skill scores are calculated based on standard contingency table (Table S2 in 
Supporting Information S1) with a 42-km radius as used in forecast products 
of the SPC. An overprediction bias is present for all DA experiments in the 
first 2 hr of forecast, possibly caused by interactions between adjustments 
from DA and the high frequency bias of the Thompson microphysics as 
suggested earlier (Skinner et al., 2018). The high biases are much reduced by 
3 hr although the overall CSI scores (solid curves labeled 0.4, 0.5, 0.6 and 0.7 
are CSI contours) also decreases somewhat (Figure 3c). Compared to NODA 
(black dots), all DA experiments have clearly higher POD, success ratio and 
CSI scores for all 3 forecast hours while skill scores for all DA experiments 
are comparable.

To examine the ability to predict the occurrence of servere weather events, 
neighborhood maximum ensemble probabilities (NMEP, Ben Bouallègue & 
Theis, 2014; Schwartz & Sobash, 2017) of 3-hr maximum 2–5 km updraft 
helicity (UH) exceeding 75 m 2 s −2 are compared in Figure 4. The NMEP is 
calculated with a 42-km neighborhood radius and smoothed with a Gaussian 
filter with a 81-km Gaussian Kernel (Brooks et al., 1998). For the tornado 
and hail reports in Texas, the NMEP is less than 40% in NODA (Figure 4a) 
but the NMEP predicted by the DA experiments are between 40% and 60% 
(Figures 4b–4e); this is apparently because the parent supercells are more 
accurately initialized by radar DA (Figure S3 in Supporting Information S1). 
For the high winds and hail along the southwestern Oklahoma - southwestern 
Missouri axis, the DA experiments predict NMEP of UH between 60% and 
80% with the maximum close to the dense cluster of events in southwestern 
Missouri (Figures 4b–4e). The NMEPs of DA experiments are very similar 
except that LGETKFs employing model-space vertical localization diff from 
EnSRF and LETKF using observation-space vertical localization in that they 
tend to have a slightly higher probability with the events in Missouri and 
western Oklahoma.

To assess the computational efficiency of different algorithms in GSI and 
JEDI, the total elapsed wall time of single EnKF analyses are compared in 

Figure S4 in Supporting Information S1. When using 40 CPU cores, JEDI LETKF and LGETKF.6 took 15,154 
and 5,828 s of walltime, especially for the first public release of JEDI-FV3 (v1.0.0). They took about 30 and 
12 times longer than GSI EnSRF, respectively. With the added support for “halo” observation distribution, the 
computational efficiency of JEDI-FV3 v1.1.2 is improved by a factor of 4–5 compared to v1.0.0. The wall time of 
LGETKF.99 (3,589 s) is slightly higher than LETKF (3,329 s), but LGETKF.6 (1,001 s) is performed about three 
times faster than the two experiments in the case of employing 40 cores. By retaining only 60% of variance for 

Figure 2. Hourly precipitation (mm) from localized probability-matched 
mean of 1-hr (left column), 2-hr (middle column) and 3-hr (right column) 
forecasts from Stage IV observation, EnSRF, LETKF, LGETKF.6, and 
LGETKF.99. Observed precipitation of 10 mm is contoured in black in the 
forecasts.
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vertical localization, the cost of LGETKF.6 is reduced by over 70%. When the computational cores are increased 
from 40 to 225 for JEDI-FV3 v1.1.2, the walltime of LETKF (290 s) is reduced by over 90% while the reduction 
of LGETKF.99 (1,333 s) is only about 70%. With 225 cores, the computational cost of LETKF is even less than 
LGETKF.6 (458 s), suggesting that JEDI LETKF has better scaling than JEDI LGETKF. The better scalability of 
LETKF with increased number of cores used than LGETKF appears to be at least partly because the creation and 
use of the much larger modulated ensemble and observation innovation calculations for all ensemble members 
in the latter do not scale as well (Figure S5 in Supporting Information S1). In contrast, GSI takes more time with 
more cores, mainly because its offline observation prior calculations take much more time using more cores.

5. Summary and Discussion
Direct radar DA capabilities were developed recently within the GSI used by current NWS operational NWP 
systems. Aiming at the future regional RRFS system, these capabilities are implemented into the JEDI DA system 
coupled with FV3-LAM and evaluated with the convective storm case of 20 May 2019 over the Southern Plains. 
Radar radial velocity and reflectivity observations are assimilated every 15 min over a 1-hr DA window using 
GSI EnSRF, JEDI LETKF, and JEDI LGETKF retaining 60% and 99% of backbround error covariance for verti-
cal localization.

Compared to NODA experiment assimilating no radar data, the assimilation of radar data, regardless of the 
algorithms used, greatly improves both analyses and forecasts of Z and Vr during the DA window in terms of the 
RMSIs. Specifically, the storm intensity and location are better predicted in DA experiments, leading to better 
forecasts of hourly precipitation and updraft helicity. The GSI EnSRF and JEDI LETKF have lower forecast 
and analyzed RMSIs of Z than JEDI LGETKF during the DA window, but overall all DA experiments have 
comparable performance for the free forecasts up to 3 hr. Even though JEDI LETKF and LGETKF do not clearly 
outperform GSI EnSRF in our radar DA study, the parallelization efficiency of JEDI-FV3 v1.1.2 is much better 
than GSI EnSRF when using over 200 cores; the version benefits from the use of “halo” observation distribution.

The LGETKF DA experiment retaining 60% of background error variance for vertical localization performs 
similarly as the LGETKF experiment retaining 99% of variance but at only about 1/3 of the computational cost. 
With JEDI-FV3 v1.1.2 when using 225 (40) cores, the cost of LETKF is much less (more) than LGETKF.6 and 
GSI EnSRF, suggesting that JEDI LETKF has much better scaling on parallel computers and may be preferred for 
operational implementation. In short, this study demonstrates, for the first time according to our knowledge, the 
benefits of directly assimilating radar data within the JEDI ensemble DA framework coupled with the FV3-LAM 
forecast model. This helps accelerate operational adoption of such capabilities in future regional operational 
NWP systems at NWS. As a demonstration of new capabilities, this paper is based on testing with a single case; 
testing with more cases is needed to obtain more robust results. The implementation and testing of radar DA with 
variational and hybrid methods in JEDI are also ongoing.

Figure 3. Performance diagrams of composite reflectivity of (a) 1-hr, (b) 2-hr and (c) 3-hr forecast for 45 dBZ thresholds for NODA (black dots), EnSRF (red dots), 
LETKF(purple dots), LGETKF.6 (blue squares) and LGETKF.99 (orange squares). Smaller symbols indicate scores of individual ensemble members, and larger 
symbols represent the ensemble mean scores of the experiments.
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Figure 4. Neighborhood maximum ensemble probability (NMEP) (%) of 3-hr maximum updraft helicity exceeding 75 m 2 s −2 
for experiments (a) NODA, (b) EnSRF, (c) LETKF, (d) LGETKF.6, and (e) LGETKF.99. The SPC storm reports of high 
wind, hail, and tornado during the forecast period are represented with blue, green, and red circles, respectively.



Geophysical Research Letters

PARK ET AL.

10.1029/2022GL102709

8 of 9

Data Availability Statement
The precipitation, reflectivity and updraft helicity data from the FV3-LAM forecasts can be obtained from https://doi.
org/10.7910/DVN/ICDC2P. GSI code employed in this study is available at https://github.com/NOAA-EMC/GSI.
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